

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

THE FILE COPY

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

AN EXPERIMENTAL INVESTIGATION
OF FUEL REGRESSION RATE CONTROL
IN SOLID FUEL RAMJETS

bу

Ko, Bog Nam

December 1984

Thesis Advisor:

D. W. Netzer

Approved for public release; distribution is unlimited.

自治是

REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACOUSION NO	ECIPIENT'S CATALOG NUMBER
HISY 23	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
An Experimental Investigation of Fuel Regression	Master's Thesis;
Rate Control in Solid Fuel Ramjets	December 1984
· · · · ·	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(+)
Ko, Bog Nam	N0001 84WR41049
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT PROJECT, TASK
Naval Postgraduate School	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Monterey, California 93943	
•	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Naval Postgraduate School	December 1984
Monterey, California 93943	13. NUMBER OF PAGES
	62
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	ISA DECLASSIFICATION DOWNGRADING
	15a. DECLASSIFICATION DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution is unlim	nited.
•	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	en Report)
18. SUPPLEMENTARY NOTES	
JOY CEMEN AND NOTES	
	i
	j
	1
19. KEY WORDS (Continue on reverse elde if necessary and identify by block number)	
Ramjet	
Solid Fuel	
Regression Rate Control	
•	}
20 ABSTRACT (Continue on reverse side if necessary and identify by block number)	ļ
An experimental investigation was conducted to	
rate control methods other than variable bypass ai	
fuel ramjet. Air and oxygen injection at various	
the fuel grain were examined as well as air, oxyge	
through the step face. One inlet swirl design was	
gas injection was found to be inadequate for regre	
small amount of inlet swirl resulted in a signific	ant increase in fuel

DD I JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

S N 0102- LF- 014- 6601

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

regression rate, indicating that variable inlet swirl may be a viable technique for providing in-flight fuel flow rate modulation in the solid fuel ramjet.

Accession For	l
NTIS CPASI	
Oric TAB D	
Communicad []	
Justification	
and the second s	
17	
stribution/	
Availability Code	
Avail and/or	-
Special	
1 1	
M-1	

5 N 0102- LF- 014- 6601

Approved for public release; distribution is unlimited.

An Experimental Investigation of Fuel Regression Rate Control in Solid Fuel Ramjets

by

Ko, Bog Nam Major, Korea Army B.S., Korea Military Academy, 1975 B.E., Yon Sei University, Seoul Korea, 1980

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL December 1984

Author:	KD, BOG NOM)	
Approved by:	Mai M. Him	
	David W. Netzer, Thesis Advisor	
<u></u>	allen E. Juha	
	Allen E. Fuhs, Second Reader	
	M. F. Plite	
	M. F. Platzer, Chairman, Department of Aeronautics	
	At Dyer	
	J. N. Dyer, Dean of Science And Engineering	

ABSTRACT

An experimental investigation was conducted to examine fuel regression rate control methods other than variable bypass air flow rates in the solid fuel ramjet. Air and oxygen injection at various axial locations within the fuel grain were examined as well as air, oxygen and ethylene injection through the step face. One inlet swirl design was also tested. Secondary gas injection was found to be inadequate for regression rate control. A small amount of inlet swirl resulted in a significant increase in fuel regression rate, indicating that variable inlet swirl may be a viable technique for providing in-flight fuel flow rate modulation in the solid fuel ramjet.

TABLE OF CONTENTS

access approved the seasons

I.	INTRODUCTION
II.	METHOD OF INVESTIGATION
	A. TEST CONDITITIONS AND METHODS 14
	B. DATA COLLLECTION METHOD
III.	DESCRIPTION OF APPARATUS
	A. RAMJET MOTOR
	B. AIR SUPPLY SYSTEM
	C. AIR HEATER
	D. DATA ACQUSITION AND CONTROL SYSTEM 28
IV.	EXPERIMENTAL PROCEDURES AND TEST CONDITIONS 30
	A. TRANSDUCER CALIBRATION
	B. FLOW RATES SET-UP
	C. TEST SEQUENCE
	1. Thrust Stand Calibration
	2. Fuel-wall Injection Tests
	3. Face Injection Tests
	4. Inlet Air Swirl Tests
٧.	RESULTS AND DISCUSSION
	A. FUEL WALL INJECTION
	B. INLET STEP FACE INJECTION
	C. INLET AIR SWIRL
	D. THRUST STAND CALIBRATION
VI.	CONCLUSIONS AND RECOMMENDATIONS
APPEND	IX A: COMPUTER PROGRAM FOR EXPERIMENT CONTROL
	AND DATA REDUCTION
TIST O	F DEFEDENCES 40

INITIAL DISTRIBUTION	LIST									61

LIST OF TABLES

1.	Fuel Wall Injection Results	•			37
2.	Step Face Injection Result				38
3.	Summary of Experimental Data				39

LIST OF FIGURES

1.1	Schematic of the SFRJ
2.1	Fuel Configurations for Side Wall Injection 15
2.2	Drawing of Injection Ring for Side Wall
	Injection
2.3	Injection Ring for Side Wall Injection 17
2.4	Step Insert For Gaseous Face Injection 17
2.5	Drawing of Step Insert for Gaseous Injection 18
2.6	Swirl Element Inlet Injector
3.1	Schematic of the SFRJ Motor 26
3.2	Schmatic of Air Supply System
3.3	Block Diagram of the Computer Data
	Aquisition/Control Program
5.1	Thrust Calibration Curve, Measured vs Actual 41

ACKNOWLEGEMENTS

I would like to express my deep appreciation to Professor David W. Netzer for his patience and assistance in completing this project. Thanks also to Mr. Pat Hickey and Mr. Glenn Middleton for their kindly assistance. Special thanks goes to my wife Gyung Gu and daughter Mee Seon and son Eugene for support and understanding during my stay at U.S Naval Postgraduate School.

I. INTRODUCTION

Ramjets operate with much higher specific impulse than rockets since ramjets use inlet air as a source of oxygen. Self-sufficient rockets, on the other hand, must carry their own exidizer and bear the consequent penalty. Accordingly, although rockets must be chosen for propulsion outside of the atmosphere, and solid propellent rockets are unchallenged for short- range tactical applications, ramjets can generally outperform rockets in the medium and long range tactical environments.

Because the ramjet depends only on its forward motion at supersonic speeds to effectively compress intake air, the engine, in principle, can employ very few, if any, moving parts. It is therefore capable of simplicity, lightness of construction, and high flight speed not possible in other air-breathing engines. These features, plus the high thermal efficiency it can achieve, make the ramjet a particulary attractive choice for propelling vehicles at supersonic speeds.

One of the significant difference between rockets and ramjets is thrust at zero speed. Rockets can deliver thrust at any speed, whereas a ramjet requires an auxiliary boost system to accelerate it to its supersonic operating regime so that its forward motion can compress the inlet air. To operate at practical efficiency a ramjet must be moving at about a Mach number of 1.5 or greater so that the margin of thrust over drag will be satisfactory.

The solid fuel ramjet(SFRJ) employs solid fuel for the combustor walls. Its distinguishing feature is the absence of fuel tankage, fuel delivery, and fuel control systems. The solid fuel ramjet offers this simplicity while providing excellent density impulse and combustion efficiency.

Figure 1.1 Schematic of the SFRJ.

flow was passed through a central swirl element which extended 0.5 inches into the combustor. The swirl was induced by machining six flutes with a twist of one turn in five inches. The latter resulted in an inlet swirl angle of approximately 5 degrees to the motor centerline.

During the normal ignition sequence, the air flow rate was set at the desired value before the ignition switch was activated. When the ignition circuit was activated, ethylene gas was introduced upstream of the fuel grain along with primary air flow. This mixture was ignited with an oxygen-ethylene torch which issued from the face of the step inlet. Normally, two to three seconds of ignition time was required for PMM combustion to sustain.

The step insert section was provisioned for variations in inlet diameters to make the sudden expansion. The fuel grain itself, when mounted in the motor, became the mid-body of the ramjet. The fuel grain (and injection ring, if used) mounted between the head-end assembly and the aft mixing chamber. The aft-mixing chamber had a length-to-diameter ratio of 2.9. The entire motor was held together by four threaded rods and nuts. The ramjet motor was then mounted on the thrust stand.

B. AIR SUPPLY SYSTEM

A schematic of the ramjet air supply system is shown in figure 3.2. From the air tanks, the air flows through a pressure regulator, a sonic choke, a vitiated air heater and finally to the head-end assembly. The air flow can be either vented into the atmosphere or vented through the ramjet motor by the control of two pneumatically operated valves. Two flexible air flow lines were used to connect the main air line to the air heater. The latter was mounted on the thrust stand.

III. DESCRIPTION OF APPARATUS

A. RAMJET MOTOR

The ramjet motor assembly used in this experiments was that used previously at NPS [Ref. 1, 2].

Figure 3.1 shows a schematic drawing of the ramjet, illustrating the main sections. These are, the head-end assembly, step insert section, fuel grain, aft mixing chamber and exhaust nozzle. For the tests with secondary injection, the injection ring was used.

The head-end assemly contains a central opening for the introduction of the primary air-flow, and ports for introduction of the ignition fuel and the igniter torch.

The fuel wall injection is shown in Figure 2.1, Figure 2.2 and Figure 2.3. Injection velocity varied between approximately 30 and 200 ft/sec as the injection mass flow rate was increased from 1% to 5 % of the inlet air flow. A nominal one dimensional flow port velocity was approximately 300 ft/sec.

For the face injection tests, air, oxygen or gaseous fuel was introduced using a differently designed step insert(Figure 2.4 and Figure 2.5). The injection was provided through eight equally spaced, 0.047 diameter holes. For an injection gas mass flow rate equal to 1% of the inlet air flow rate the injection velocity was approximately 65 ft/sec.

To provide a swirl at the air inlet, a specially designed insert was used (Figure 2.6). This device was a tube-in-hole type injector. Approximately 43 % of the air flow passed through the outer annulus to maintain the recirculation region/flame holder. The other 57 % of the air

where Pe = exit pressure of the nozzle P_{\bullet} = ambient pressure. Then for a choked converging nozzle, this equation can be simplified to

$$C_{F_{exp}} = \sqrt{\frac{2\gamma^2}{\gamma+1} \cdot \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}} + \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}} - \frac{P_0}{\bar{P}_0}$$
 (2.13)

where R and γ are determined using PEPCODE

Then efficiency based on thrust is calculated from

$$\eta_{aT_{F}} = \frac{C_{exp}^{*2} - C_{a}^{*2}}{C_{th}^{*2} - C_{a}^{*2}}$$
(2.14)

where $\overset{\star}{\text{Cexp}} = \overline{F} g_{\text{C}} / (\dot{\mathbf{m}}_{\text{C}} C_{\text{F}} \exp)$ $C_{\text{a}}^{\dagger} = \overline{F} / (\dot{\mathbf{m}}_{\text{F}} C_{\text{F}}) \text{ (determined before)}$

ignition)

F = average thrust from analog

record

Mρ; = pre-ignition flow rate

$$Dth_{eff} = \int \frac{C_{air}^{\pi} \dot{m}_{air}}{P_{ca} \frac{\pi}{4} g_{c}}$$
 (2.8)

Then temperature-rise comustion efficiency based on nozzle stagnation pressure can be calculated using $c^{\#}$

$$\eta_{\text{aTp}} = \frac{C_{\text{exp}}^{*2} - C_{\text{a}}^{*2}}{C_{\text{th}}^{*2} - C_{\text{a}}^{*2}}$$
(2.9)

where C_a^* = characteritic exhaust velocity for air flow before ignition

Cexp = experimental characteristic exhaust velocity based on Pc, the average combustion pressure

 $C_{\mathsf{th}}^{\mathsf{m}}$ is obtained from equation(2.7) using γ , R and Tt from PEPCODE with inputs of Pc, Ta, \dot{m}_{air} , \dot{m}_{f} , $\dot{m}_{\mathsf{o}_{\mathsf{a}}}$ and $\dot{m}_{\mathsf{c}_{\mathsf{a}}\mathsf{H}_{\mathsf{q}}}$. The latter two flow rates are used in the vitiated air heater.

The thrust equation is

$$F = mt Ue + (Pe - Po) Ae$$
 (2.10)

where $\dot{m}_{t} = \dot{m}_{a,r} + \dot{m}_{f} + \dot{m}_{0,r} + \dot{m}_{0,1}$

A thrust coefficient, CF, can be defined such that

$$F = C_{F} Pt Ath \qquad (2.11)$$

$$C_{\text{Fexp}} = \sqrt{\left(\frac{2 \Upsilon^2}{\Upsilon - 1}\right) \left(\frac{2 \frac{\Upsilon + 1}{\Upsilon - 1}}{\Upsilon + 1}\right) \left\{1 - \left(\frac{P_e}{\overline{P_c}}\right)^{\frac{\Upsilon + 1}{\Upsilon}}\right\} + \left(\frac{P_e - P_e}{\overline{P_c}}\right) \frac{Ae}{A th}}$$
 (2.12)

based on thrust. The one dimensional continuity equation $(\dot{m}=\int_{0}^{\infty}A\ V)$ can be expressed in terms of the chamber stagnation properties for a choked converging nozzle

$$\dot{m}_{t} = \frac{P_{t} A t heff}{\sqrt{R T_{t}}} \sqrt{g_{t} \gamma \left(\frac{\Delta}{\gamma + 1}\right)^{\frac{\gamma}{\gamma} - 1}}$$
(2.5)

where $\dot{m}_{\dot{\mathbf{t}}}$ = total flow rate

Pt = Pc, chamber pressure(for low Mach

number)

ストン 主義を アップング 化物理 しょうへん う 物質 マックマンセス

Athers effective nozzle throat area R = gas constant

The characteristic exhaust velocity, c^* is defined as

$$C^* = \frac{P_c A + h g_c}{\dot{m}_t} = \frac{F g_c}{C_F \dot{m}_t}$$
 (2.6)

where C_F = thrust coefficient

For a sonically choked exhaust nozzle,

$$C^* = \sqrt{\frac{3c}{3}} \left(\frac{\gamma + 1}{2}\right)^{\frac{4c}{3} - 1}$$
 R Tt (2.7)

Using pre-test air flow through the motor, equations (2.6) and (2.7) can be used to determine the effective exhaust nozzle throat diameter(Dtheff)

$$\overline{Df} = \sqrt{\frac{4 \Delta W}{\pi \beta L} + \overline{Di}^2}$$
 (2.2)

where ΔW = weight change

L = length of the fuel grain

9 = density of the fuel grain

 $\overline{D_{l}}$ = average intial port diameter of the

PMM grain

The average fuel regression rate was then computed using

$$\dot{r}_{avg} = \frac{\overline{D_f} - \overline{D_i}}{2 \text{ tb}}$$
 (2.3)

The mixture ratio, chamber pressure and motor air inlet temperature were used as input into the Naval Weapons Center(NWC) China Lake, Ca., Propellant Evaluation Program(PEPCODE) computer program to obtain the theoretical adiabatic combustion temperature and the combustion gas properties(γ and R). This temperature was used to calculate temperature rise combustion efficiencies based on thrust and based on nozzle stagnation pressure, where

$$\eta_{\Delta T} = \frac{T_{t exp} - T_{a}}{T_{t + h} - T_{a}}$$
(2.4)

and T_{texp} = combustor stagnation temperature T_{tth} = theoretical combustor temperature Ta = inlet air temperature

Experimental values of combustor stagnation temperatures were calculated in two ways, one based on pressure and one

Figure 2.6 Swirl Element Inlet Injector.

Temperatures were only recorded digitally. Average values of the thrust and chamber pressure were determined using a compensating polar planimeter on the analog record.

The mass flow rate of air was obtained by using sonically choked nozzles. Average fuel mass flow rate was calculated by using the weight loss during the burn time

$$Mf = \frac{\Delta W}{tb}$$
 (2.1)

where ⊿w = weight change during the run tb= burn time

The average internal diameter of the fuel grain was measured prior to the run. The final average diameter was determined based on weight loss and fuel length by using

Drawing of Step Insert for Gaseous Injection. Figure 2.5

Figure 2.3 Injection Ring for Side Wall Injection.

Figure 2.4 Step Insert For Gaseous Face Injection.

Drawing of Injection Ring for Side Wall Injection. Figure 2.2

conditions found to significantly affect chamber pressure(or thrust) were further evaluated using full-length burn times of approximately 30 seconds (in order to accurately determine regression rate and combustion efficiency).

B. DATA COLLLECTION METHOD

The data collected during the regression rate control tests consisted of air flow rates, oxygen, air or fuel flow rates for the injection, motor head-end and chamber pressures, weight changes of the fuel grain, pre-ignition air flow time, ignition time, burning time, purge time, thrust and ignition gas flow rate. All pressures and the thrust were recorded both digitally and analog.

Figure 2.1 Fuel Configurations for Side Wall Injection.

II. METHOD OF INVESTIGATION

A. TEST CONDITITIONS AND METHODS

The experimental investigation was begun by selecting several configurations for regression rate control through the utilization of secondary injection. It was decided to examine secondary injection at three locations through the fuel grain wall: in the recirculation zone(flame holder area), just downstream of flow reattachment and further downstream within the region of the developing boundary layer (in which is located a turbulent diffusion flame). In addition, gaseous injection on the inlet step face and inlet air swirl were examined.

Polymethylmethacrylate(PMM) was used as the fuel and had a nominal length of 12 inches and an internal diameter of 1.5 inches. A sudden expansion inlet was used which provided an inlet step height of 0.49 inches.

Flow reattachment normally occurs between 7 and 8 step heights(i.e, 3.5 - 4 inches). Thus the three injection location chosen where 2, 5, and 8 inches from the head end(See Figure 2.1).

The injection ring was designed to provide radial injection through eight equally spaced, 0.0625 inches diameter holes (See Figure 2.2 and Figure 2.3).

Gaseous injection was also used through the inlet step face as shown in Figure 2.4 and Figure 2.5.

Swirl was provided to the inlet air flow through the use of a swirl element inlet injector(Figure 2.6).

Initial screening tests of short duration were made in which no injection or swirl was used, followed by tests with various amounts of gaseous injection or swirl. Those

oscillations. Therefore, other fuel regression rate control techniques should be persued.

One possible alternative technique is the use variable swirl at the air inlet. Increased swirl increase the regression rate. This technique would require a vane control device. Another possibility is the use of secondary injection of air, oxygen or gaseous fuel into one or more locations within the combustor. This may lead to both increased fuel regression rate and combustion efficiency. If oxygen were used it would require auxillary supply system. Therefore, it would be a practical possibility (to maintain simplicity) for a one-time augmentation in thrust(at take-over from booster, terminal maneuver, etc).

In this investigation tests were conducted to examine the effects of secondary gaseous injection and inlet air swirl on regression rate and combustion efficiency.

A new ramjet thrust stand was installed in the combustion laboratory and required calibration and certification. A second part of this investigation was to conduct tests using high temperature inlet air and then to ensure that combustion efficiencies based on thrust and based on measured chamber pressure were in agreement.

Fig 1.1 shows a schematic of a SFRJ combustor. One inherent problem with the SFRJ is the dependence of fuel regression on the air mass flux through the fuel grain. The fuel regression rate generally behaves according to

$$\dot{r} = k \left(\frac{\dot{M}_{air}}{A_P} \right)^{x} f \left(Tair, P \right)$$
 (1.1)

where \hat{r} = fuel regression rate

Mair = air flow rate

Ap = port area

f(Tair,P) = a weaker function of inlet air temperature and pressure

x is between .3 and .6

If the air flow rate increases or decreases, then the fuel flow rate varies in the correct direction, but not enough to maintain design fuel-air ratio. This can significantly affect propulsive thrust.

The range of application and the performance of the SFRJ could be significantly improved if fuel regression rate could be controlled in some manner. Perhaps the most obvious method for fuel regression rate control is to use variable bypass air flow.

Bypass designs are often desired in order to increase fuel loading, and can also improve combustion efficiency. A valve in the bypass line could be used to vary the bypass ratio, thus producing changes in the fuel flow rate according to equation 1.1. (since only the fuel port air mass flux affects the regression rate). However, combustion efficiency may vary significantly with the amount of bypass air and a control valve must be used in the inlet air ducting. In addition, flow coupling may lead to undesired

Figure 3.1 Schematic of the SFRJ Motor.

Figure 3.2 Schmatic of Air Supply System.

C. AIR HEATER

To simulate actual flight condition, air should be heated to the appropriate stagnation temperature. In this investigation ethylene gas used in the air heater. The oxygen in the air which is consumed during the heating must be replaced before injection into the ramjet cumbustor. Figure 3.2 shows a schematic diagram of the air heater. The air heater and the ramjet motor assembly were mounted together on the thrust stand.

D. DATA ACQUSITION AND CONTROL SYSTEM

The primary instrumentation used in this investigation consisted of various individual pressure transducers and thermocouples and a strain gage load cell for the thrust measurement. All transducer outputs were recorded both with a Honeywell 1508 Visicorder and HP-9836S computer using a HP-3054A AUTOMATIC DATA AQUISITION/CONTROL SYSTEM. A timing reference signal was provided to the analog record by feeding a 10 Hz signal from a laboratory signal generator to the timing channel of the Visicorder. During the test, the HP-9836S computer system was used record to the temperatures, and thrust, and calculate the flow rates of the ignition gas, purge gas, air heater ethylene and oxygen, air and secondary injection gas. It was necessary to record the PMM fuel grain weight and inner diameter before and after each run. The fuel grain weight was measured using a balance. All thermocouples used were chromel vs alumel (type K) with electronic ice points.

The computer was used to both control the test sequence and to provide data aquisition during the experiment. Figure 3.3 is a block diagram of the computer program. (See Appendix A. for a complete listing). Data aquisition for all fourteen channels were recorded every 0.5 seconds.

	Transducer calibrations main air sonic choke pressure chamber pressure motor head pressure air heater fuel sonic choke pressure oxygen make-up sonic choke pressure ignition fuel sonic choke pressure purge gas sonic choke pressure thrust transducer
_	
	Pre-run input test number, date fuel I.D fuel dimensions and weight air heater fuel type motor throat diameter ignition delay time ignition time buring time purge time sonic choke diameters, discharge coefficier gas contants and desired flow rates
-	
_	Flow rates set-up main air heater fuel make-up oxygen ignition fuel purge gas
_	
-	Test and data collection pressures and temperature in voltages
-	
_	Data extraction pressures, temperatures and flow rates
_	
 !	Print results

Figure 3.3 Block Diagram of the Computer Data Aquisition/Control Program.

IV. EXPERIMENTAL PROCEDURES AND TEST CONDITIONS

A. TRANSDUCER CALIBRATION

A dead-weight tester was used for the calibration of all pressure transducers. Initially all transdusers were checked for linearity and the Visicorder(analog) display positions were labeled. For the computer data aquisition, voltages corresponding to atmospheric pressure and the maximum pressure were measured. From these readings a calibration constant (K) was determined for each transducer.

$$K = \frac{\sqrt{p_{\text{max}} - \sqrt{p_0}}}{P_{\text{max}}} \tag{4.1}$$

where Vpmax = voltage reading at the applied
maximum pressure

Vpo = voltage reading at atmospheric
pressure

Pmax = maximum applied pressure

The thrust transducer was calibrated in-place by appliying known weights to the transducer through a pulley system attached to the thrust stand.

B. FLOW RATES SET-UP

By use of the computer, the gas flow rates could be set up before the hot firing. These were determined from short duration flows using the equation

$$\dot{M} = \frac{Cd \quad K_m \quad P_t \quad \frac{\pi}{4} \quad D_{choke}}{\sqrt{T_t}}$$
 (4.2)

where km = constant (a function of R and γ)

Cd = discharge coefficient

Pt = total pressure of the gas flow

Dchoke = sonic choke diameter

 T_{\uparrow} = total temperature of the gas flow

C. TEST SEQUENCE

1. Thrust Stand Calibration

The thrust stand was calibrated to determine the difference between the measured thrust and the actual theoretical thrust. The measured thrust can be in error primarily due to the variation in flex-line stiffness with levels. The process was begun by changing pressure dead-weight calibration of the load cell. Cold air was then flowed through the motor with a choked exhaust nozzle. Measured thrust was recorded and compared to the theoretical thrust. The latter was calculated using Equations (2.11) and (2.13). This was repeated for increasing air flow rates and for three different exhaust nozzle throat diameter. additional test was made using hot air (1200°R) and a 12 inches long HTPB fuel grain. This test was conducted in order to compare the temperature rise combustion efficiency determined by using chamber pressure and by using thrust.

2. Fuel-wall Injection Tests

For the fuel-wall injection tests, three injection location were used as discussed above. Each test lasted for approximately six seconds, three seconds without injection

and three seconds with injection. Air injection mass flows of 2, 5 and 7 percent of the main air flow rate were used. For oxygen injection, 1.5, 2 and 5 percent were used. Those conditions which resulted in the greatest increases in chamber pressure/thrust were repeated with full duration(30 sec) tests.

3. Face Injection Tests

In these experiments a twelve inches long cylindrically perforated PMM fuel grain was used. Air injection flow rates of 2, 5 and 7 percent of the main air flow rate were examined. For oxygen injection, 1.5, 2 and 5 percent were used. Ethylene was also used with 0.5, 1.25 and 2.5 percent. Testing methods were identical to those discussed above for fuel-wall injection.

4. <u>Inlet Air Swirl Tests</u>

Several inlets were initially tried which induced swirl to the entire inlet air flow. Swirling the entire flow apparently distroys the flameholding recirculation zone, and resulted in no ignition. The tube-in-hole injector discussed above was then tested using a twelve inch PMM fuel grain.

V. RESULTS AND DISCUSSION

Summaries of the experimental results obtained during the initial screening tests are presented in Table 1 and Table 2 for fuel-wall and inlet step-face injection respectively. Results from the subsequent full duration tests are presented in Table 3.

A. FUEL WALL INJECTION

In data presented in Table 1 shows that air injected through the fuel grain surface was generally detrimental to combustion. Air injection rates up to approximately 7% of the inlet air flow rate had little if any effects on combustion pressure when introduced downstream of flow reattachment. Small amounts of air injected into the recirculation zone appeared to provide small improvements. The injected air was quite cold (approximately 500°R) and therefore could have had a quenching effect on the boundary layer combustion. Use of "in-flight" high air should be examined in the future.

Unheated oxygen injection resulted in significant increases in combustion pressure, especially when introduced into the recirculation zone in small amounts. Based on these screening test results two additional tests were conducted with test times of approximately 30 seconds. These tests were made to examine the effects of 1% oxygen injection into the recirculation region.

In these tests, a total grain length of fourteen inches was used; two inches of PMM, then the injection ring and then twelve inches of PMM. One test(Table 3, no. 30) was made without injection and one with (Table 3, no.29).

Oxygen injection resulted in approximately a 5 % increase in in fuel regression rate (when adjusted for the different air flowrate) but a decrease of 21 % in combustion efficiency. The recirculation zone is generally fuel rich. Thus, oxygen injection should increase the "flame-holder" temperature. This was evident during the test from increased flame luminosity.

It is not clear at this point why the combustion efficiency decreased or, for that matter, why the precence of the ring alone increased combustion efficiency. The oxygen injection velocity was approximately 30 ft/sec which is less than 30 % of typical recirculation zone, near-wall velocities. However, the injected oxygen may have penetrated the shear layer.

Further testing would be benificial, especially using HTPB, but at this point it does not appear that fuel wall injection of small amounts of air or oxygen is a viable method for providing fuel mass flowrate control since combustion efficiency was decreased significantly and the increase in regression rate was small.

B. INLET STEP FACE INJECTION

The data from the screening tests with step-face injection are presented in Table 2. Unheated air had no significant effect on combustion pressure. Oxygen injection resulted in increased flame luminosity in the recirculation zone but apparently did not significantly affect downstream combustion (even though the overall equivalence ratio was approximately 0.7). Injection of ethylene resulted in significant increases in combustion pressure.

A full duration test (Table 3, no. 28) was conducted using 1 % of ethylene with an injection velocity of approximately 65 ft/sec. Comparison of the results with

those for no injection (Table 3, no. 27) showed that only a small increase occurred in fuel regression rate.

Some of the ethylene apparently escaped the recirculation region and burned downstream in the central air or in the aft mixing region, resulting in little effect on regression rate.

C. INLET AIR SWIRL

Only one test was conducted using inlet air swirl (Table 3, no. 31). Approximately 43 % of the air was injected axially to maintain the recirculation zone flame holding ability. This could be reduced to perhaps only 10 - 20 %, resulting in more air with swirl. The amount of swirl was also intentionally kept small (5 degrees from the axial direction) to determine if regression rate was sensitive to the swirl.

The small amount of swirl increased the fuel regression rate by $15\,\%$. This resulted in an increase in equivalence ratio ratio from $0.69\,$ to $0.79\,$. Some non-uniformity in regression rate was also evident.

These initial results indicate that fuel regression rate is quite sensitive to inlet air swirl. Further testing is necessary using varying amounts of swirl, but the technique appears viable for in-flight fuel mass flow modulation.

D. THRUST STAND CALIBRATION

The results from the cold-flow tests for comparison of measured and calculated thrust are in Figure 5.1. Excellent agreement was attained. A least-square fit of the data resulted in the following equation for relating measured thrust to the "actual" thrust

$$Fa = 1.0149 \times Fm + 0.4$$
 (5.1)

where Fa = actual thrust, based on Pc and
throat diameter

Fm = measured thrust

A test was then coducted (Table 3, no. 32) in which HTPB fuel was used with an inlet air temperature of approximately 1200 R. This test was made in order to compare the combustion efficiencies based on chamber pressure and based on thrust. The two efficiencies were within 5 %, with the value based on Pc being greater. This difference is not large when it is realized that small errors in determining F and Pc from the analog traces are squared when calculating C for the efficiency based on thrust determination.

s Injected gas		air air air	・アアアア	i	air	oxygen oxygen		air	oxygen oxygen
Result Pc/Pc	0/	00000			3.5	3.3		5.3	22.5
Wall Injection Minj/Mair	onfiguration	I I	22-10	್ಡ	1	0.4	onfigu	52	5.0
	4 inches c	0.004 0.0029 0.0042 0.014	0.001 0.003 0.003 0.003	7 inches c	0.01	$0.001 \\ 0.003$	10	0.004	0.01
Mair	8 inche	0.193 0.205 0.205 0.196	0.200 0.197 0.192 0.192	5 inches an	0.202	0.208	ches	0.200	0.205
	Tagmati	12004S		, 1 1 1 1	10	11	ı	13 14	15

		Step Fac	IABLE 2 Step Face Injection Result	esult	
Test	Mair (Lbm/sec)	Minj (Lbm/sec)	Minj/Mair	• P C / P C	Injected gas
19	0.196	0.003388	2.0	3.0	air
20	0.201	0.0104	5.0	4.0	air
21	0.209	0.00099	0.5	0.0	oxygen
22	0.143	0.00095	0.65	0.0	oxygen
23	0.205	0.00105	0.5	4.0	ethylene
24	0.201	0.00264	1.25	5.9	ethylene
2.5	0.203	0.00513	2.5	5.0	ethylene

TABLE 3
Summary of Experimental Data

Der	2/	28	5.3	30		32
Condition	nominal	1 % C2 H4 face injection	recir ation zon	02 same as cul- 29 with- out inje-	inlet air swirl	nominal
Fuel	PMM	PMM	PMM	PMM	PMM	HTPB
Initial weight (Lbm)	6.01	6.035	6.645	6.013	5.583	1.664
Final weight (Lbm)	5.448	5.471	5.972	5.410	5.169	1.165
Length (in)	11.933	11.848	13.838	14.013	11.761	12.170
Dp, intial (in)	1.500	1.502	1.501	1.503	1.502	1.538
Dtheff (in)	0.739	0.739	0.737	0.744	0.737	0.938
<pre>Fuel Density (Lbm/cu.in)</pre>	0.0426	0.0426	0.0426	0.0426	0.0426	0.0332
f stoichiometric	0.121	0.121	0.121	0.121	0.121	0.0737
Burn time (sec)	33.1	33.1	33.4	33.1	34.3	6.6
ἦair (Lbm/sec)	0.203	0.202	0.203	0.185	0.202	0.498
Tair, inlet (R)	546	538	501	563	504	1172
Mf (Lbm/sec)	0.0169	0.0171	0.0201	0.0182	0.0194	0.0504
ř (in/sec)	0.0062	0.0063	0.00634	0.0058	0.0071	0.0225

```
ENTER 722; Uphf
OUTPUT 709; "AC10"
OUTPUT 722; "T3"
6550
6560
6570
6580
         ONTER 722; Vinf
CLEAR 709
OUTPUT 709; "DC10,0"
PRINT "MANUALLY TURN OFF AIR 'HEATER GAS' SWITCH"
5590
6500
5510
6620
          REEP
          DISP "HIT CONTINUE TO PROCEED"
6630
          PAUSE
6640
         OUTPUT 709; "DO10,0"
Phf=(Vphf-Vphf0)*Kphf+Pbar
Volts=Vthf
6650
6660
6670
6630
          GOSUB Tcalc
6698
          Thf=T
6710
6710
6720
6730
          Mhf=Kmhf*CJhf*Phf*.7854*(Dhfchoke^2)/(Thf^.5)
          PRINT USING "E"
PRINT USING "4A.DD.DDDDD"; "Mnf="; mhf
          PRINT USING "12A, DD. DDDDD"; "MAF DESIRED="; MAF d
6740
6750
          Ratio=Hhf/Hhfd
          PRINT USING "19A,D.DDD,2X,4A,DDDD.DD,1A";"Mhf/ Mhf DESIRED=";Ratio,"Thf="
; Th f , "R"
6750 P
          Po=Phf-fbar
       PRINT USING "5A,DDDD.DDD,4A,3X,4A,DDDD.DD,1A,4A,DDDD.DD,1A"; "Phf= ";Pg; "P

"Thf=";Thf; "R"

INPUT "15 HEATER FUEL FLOW RATE ACCURATE ENOUGH? (Y/N)",Xx$

IF Xx$="Y" THEN GOTO Phffin
6770
51g
6790
6790
          Phinew=(Phi*Mhfd/Mhf)-Phar
6800
          PRINT USING "13A DDDD DD, 4A"; "RESET Phf TO"; Phinew; "Psig" DISP "HIT CONTINUE AFTER RESET OF Phf"
6810
6820
6830
          PAUSE
6840
          GOTO Phfset
6850 Phffin:!
6850
           DISP "HIT CONTINUE TO PROCEED TO NEXT FLOW RATE SET UP"
5970
           PAUSE
5880 Phfskip
           PRINT USING "8"
6858
6900
           INPUT "DO YOU WANT TO PRESET THE HEATER DXYGEN FLOW RATE?(Y/N)", Zz$
           IF Zzs="N" THEN GOTO Phoskip
6910
6920
                           *********
           PRINT "SET THE DESIRED VALUE OF Pho USING THE HAND LOADER/PRESSURE GARE"
6930
6940
           6950
           DISP "HIT CONTINUE WHEN READY"
6950 PAUSE
5970 Phoset: !
                PRINT "MANUALLY TURN ON AIR 'HEATER GAS' SWITCH"
DISP "HIT CONTINUE TO PROCEED"
PAUSE
5988
6990
7009
                PAUSE

DUTPUT 709; "AC4"

DUTPUT 722; "T3"

ENTER 722; Vph o

OUTPUT 709; "AC11"

DUTPUT 722; "T3"

ENTER 722; Vth o

CLEAR 709
7010
7020
7030
7040
 7050
7050
7050
7070
7080
7070
                 OUTPUT 709; "DC10,0"
                 PRINT "MANUALLY TURN OFF AIR 'HEATER GAS' SWITCH"
7100
                 BEEP
7110
7120
                 DISP "HIT CONTINUE TO PROCEED"
                 PAUSE
                 OutPut 709; DO10.0 Pho=(Vpho-Vpho0) Kpho+Pbar
7130
7150
                 Valts=Utha
7160
                 GOSUB Tcalc
7170
                 Tho=T
                Mho=Kmho*Cdho*Pho*.7854*(Dhochoke^2)/(Tho^.5)
PRINT USING "8"
PRINT USING "4A,DD.DDDDD";"Mho=";Mho
7180
7190
7200
```

```
IF Xx$="Y" THEN GOTO Dtheffcalc
5900
        Panew=(Pa*Maird/Mair)-Pbar
PRINT "RESET Pa TO";Panew;"Psig"
DISP "HIT CONTINUE AFTER RESET OF Pa"
5910
5920
5938
        PAUSE
5940
5950
        GOTO Paset
5980
        Cfair=.7396+.5293-(14.7/Pc)
         Dtheff=(((Cstar*Mair)/(.7854*Pc*Gc))*,5)
5990
        PRINT "Cstarair(BASED ON Ti)=";Cstar, "(ft/sec)"
6000
        6010
6020
6030
5040
6050
        F=(VF-VfB)*KF
        Fair=Cfair*Pc*.7854*(Dtheff^2)
PRINT "Fair(BASED ON Pc)=";Fair,"(Lbf)"
PRINT "Fair(MFASURED)=";F,"(Lbf)"
IF Ko=0 THEN GOTO 6170
INPUT "DO YOU WANT PRINTOUT OF POST RUN DATA?(Y/N)",Yy$
6060
6970
6080
6090
5100
         IF Yys="N" THEN GOTO Finish
6110
6128 Headinoprint: 1.
6130 PRINTER IS 701
        PRINT USING "6/"
PRINT USING "6/"
PRINT " ****** POST RUN DATA COLD AIR
GOTO Preprint
INPUT "DO YOU WANT PRINTOUT OF PRE-RUN DATA?(Y/N)",Xx$
IF Xx$="Y" THEN GOTO Preprint
6140
6150
                                      ***** POST RUN DATA COLD AIR, CHOKED ****** *
6150
6170
6180
        GDTO Skipprint
6190
6200 Preprint:
6210
          PRINTER IS 701
9530
9550
          IF Ko=1 THEN GOTO 6240
6230 PRINT *
KED FLOW ****
                                         **** PRE-RUN DATA, USING COLD AIR ONLY AND CHO
         PRINT **
6240
         6250
6250
6270
6280
6290
6300
6310
6320
6330
         PRINT "Fair (BASED ON Pc)=";Fair, "(Lbf)"
PRINT "Fair (MEASURED)=";F, (Lbf)"
         PRINT "Mair=";Mair,"Lbm/sec"
PRINTER IS 1
IF Ko=1 THEN GOTO Finish
6340 PRINTER IS I
6340 FRINTER IS I
6350 IF Ko=1 THEN GOTO Finish
6350 Skieprint: !
6370 DISP "HIT CONTINUE TO PROCEED TO NEXT FLOW RATE SET UP"
6390 Paskip: 1
6400 PRINT USING "0"
6410 INPUT "DO YOU WANT TO PRESET THE HEATER FUEL FLOW RATE? (Y/N)", Z2$
PRINT "SET THE DESIRED VALUE OF Phy USING THE HAND LOADER/PRESSURE GAGE"
6440
6450 DISP "HIT CONTINUE WHEN READY" 6478 PAUSE
6480 Phfset:!
        PRINT USING "P"
6491
5500
5510
6520
6530
        PRINT "MANUALLY TURN ON AIR 'HEATER GAS' SWITCH"
DISP " HIT CONTINUE TO PROCEED"
         PAUSE
        OUTPUT 709; "AC3"
OUTPUT 722; "T3"
5540
```

```
5250 IF Zzs="Y" THEN GOTO Nochange
5250 Changevariable:!
5270 PRINT "INPUT VARIABLE NAME= CORRECTED VALUE"
5290 PRINT "A STRING VARIABLE MUST BE ENCLOSED IN QUOTATION MARKS"
5290 DISP "HIT EXECUTE AND THEN CONTINUE AFTER CORRECTION "
 5300
5310
        PAUSE
        GOTO Changet
 5320 Nochange:!
5330 !*****
          5340
         ! B. FLOW RATE SET-UPS
 5350
        ***********************
 5360 PRINT USING "P"
         INPUT "DO YOU WANT TO PRESET THE AIR FLOW RATE?(Y/N)",Zz$
IF Zz$="N" THEN GOTO Paskip
 5370
 5380
 5390 PRINT "SET THE DESIRED VALUE OF Pa(psig) USING THE HAND LOADER /PRESSURE G
 AGE'
 5400 PRINT USING "3/"
 5410 PRINT "THE HAND LOADER SHOULD BE 20 PSIG HORE THAN DESIRED PRESSURE"
 5420 Paset:
 5430 PRINT USING *3/*
          PRINT "MANUALLY INITIATE AIR FLOW BY TURNING 'MAIN AIR' TO 'ON' AND PUSHI
I' ON CONTROL PANEL"
 5440
 NG 'PRI'
           DISP "HIT CONTINUE WHEN READY"
 5450
           PAUSE
 5460
          WAIT 3
OUTPUT 709; "AC2"
OUTPUT 722; "T3"
ENTER 722; "Da
OUTPUT 709; "AC9"
OUTPUT 709; "AC9"
OUTPUT 709; "AC0"
OUTPUT 709; "AC0"
OUTPUT 709; "AC0"
OUTPUT 709; "AC8"
OUTPUT 709; "AC8"
OUTPUT 722; "T3"
ENTER 722; V11
OUTPUT 769; "AC5"
OUTPUT 722; "T3"
ENTER 722; V15
ENTER 722; V15
 5470
           WAIT 3
 5488
 5490
 5508
5510
5520
5530
5540
5550
5550
5570
5570
5570
 5600
 5610
           ENTER 722; UF
CLEAR 709
 5620
5630
           OUTPUT 709; "DC10,1"
 5640
                                                  ! DIGITALLY CLOSE CIRCUIT 1
 5650
           WAIT '
 5550
5570
5580
           OUTPHT 709; "DO10,1"
                                                  ! DIGITALLY OPEN CIRCUIT 1
           PRINT "TURN OFF 'HAIN AIR'"
5490
5710
5710
5720
5730
           DISP "HIT CONTINUE TO PROCEED"
           PAUSE
           Pa=(Upa-Upa0)*Kpa+Pbar
           Pc=(Vpc-Vpc0)*Kpc+Pbar
           Volts=Vta
5740
5750
5760
           GOSUB Tcalc
                                                  ! CONVERSION FROM VOLTAGE TO TEMPERATURE
            Ta=T
           Volts=Vti
 5770
5780
5790
           GOSUB Tcalc
                                                  ! CONVERSION FROM VOLTAGE TO TEMPERATURE
           11=1
           Main=Kmain*Cdain*Pa*.7854*(Dainchoke^2)/(Ta^.5)
           PRINT USING "5A,2X,DDD.DDDDD"; "Mair="; Mair
PRINT USING "5A,2X,DDD.DDDD"; "Mair DESIRED="; Maird
 5800
 5810
 5820
 5830
           Ratio=Mair/Maird
 5840 PRINT USING "20A,D.DDD,2X,3A,1X,DDDD.DD,1A,3X,3A,DDDD.DD,1A"; "Mair/DESIRE D.Mair=";Ratio,"Ta=";Ta,"R","Ti=";Ti;"R"
          Pg=Pa-Pbar
PRINT USING "4A, DDDD. DD, AA"; "Pa =";Pq; "Psig"
PRINT USING "4A, DDDD. DD, 1A"; "Ta =";Ta; "R"

IF Ka=1 THEN GOTO Dtteffcalc
 5350
 5860
5870
 5880
                                                                            ! DETERMINE PRE-RUN OR POST-RUN
           INPUT "IS AIR FLOW RATE ACCURATE ENOUGH? (Y/N)",Xx$
```

```
4680
                  INPUT "THE AIR CHOKE DISCHARGE COEFFICIENT", Cdair
                   INPUT "THE AIR HEATER FUEL CHOKE DISCHARGE COFFFICIENT", Cdhf
INPUT "THE AIR HEATER OXYGEN CHOKE DISCHARGE COFFFICIENT", Cdho
INPUT "THE IGNITION GAS CHOKE DISCHARGE COFFFICIENT", Cdif
 4690
  4700
 4710
                    INPUT "THE PURGE GAS CHOKE DISCHARGE COEFFICIENT", Cop
INPUT "THE AIR HEATER FUEL FLOW RATE CONSTANT, KMAF". KMAF
 4730
4730
  4740
                    INFUT "THE IGHITION GAS FLOW RATE CONSTANT, KMIF", KMIF
                   INPUT "THE PURGE GAS FLOW RATE CONSTANT, Kmp", Kmp
INPUT "GAMMA FOR HEATER FUEL, Gammahf", Gammahf
INPUT "GAMMA FOR IGNITION FUEL, Gammaif", Gammaif
 4750
 4750
4770
                   INPUT "GAMMA FOR PURGE GAS, Gammap", Gammap
INPUT "GAS CONSTANT FOR HEATER FUEL, Rhf(ft.lbf/lbm.R)", Rhf
INPUT "GAS CONSTANT FOR IGNITION FUEL, Rif(ft.lbf/lbm.R)", Rif
  4790
 4776
  4900
                    INPUT "GAS CONSTANT FOR PURGE GAS, Rp(ft.1bf/lbm.R)", Rp
 4810
                    INPUT "THE AIR CHOXE DIAMETER, Dairchoke (in)", Dairchoke INPUT "THE HEATER FUEL CHOKE DIAMETER, Dhifuchoke(in)", Dhifchoke
 4820
 4830
                  INPUT "THE HEATER FUEL CHOKE DIAMETER, Dhtfuchoke(in)", Dhtchoke INPUT "THE IGNITION OXYGEN CHOKE DIAMETER, Dhtoxchoke(in)", Dhochoke INPUT "THE IGNITION FUEL CHOKE DIAMETER, Diamfuchoke(in)", Difchoke INFUT "THE PURGE CHOKE DIAMETER, Duampechoke(in)", Dpchoke INFUT "THE DESIRED MASS FLOW RATE OF AIR, Maird(lbm/sec)", Maird INPUT "THE DESIRED MASS FLOW RATE OF heater FUEL, Mhfd(lbm/sec)", Mhfd INFUT "THE DESIRED MASS FLOW RATE OF heater OXYGEN, Mhod(lbm/sec)", Mifd INFUT "THE DESIRED MASS FLOW RATE OF IGNITION FUEL, Mifd(lbs/sec)", Mifd INFUT "THE DESIRED MASS FLOW RATE OF PURGE, Mmd(lbm/sec)", Mpd INFUT "THE THIFCTION CAS, To pertoas", In pertoas "
 4840
 4850
  4850
 4370
  4850
 4898
  4900
 4910
                    INFUT "THE INJECTION GAS, Injectoas", Injectoas$
  4920
 4938
                     4940
                    l ¥
                                      CHECK THE INPUT DATA
 4950
                    *****************
  4950 Changel:
 4970
                 PRINT USING "@"
4970 PRINT USING "14A,9A,5X,14A,9A,5X,14A,9A,2X,14A,DDDD.DDDD"; "Testno=";Testno $,"Date=";Oate$,"Fuelid$=";Fuelid$."Pbar=";Fbar
4990 PRINT USING "14A,9A,5X,14A,9A,5X,14A,9A,5X,14A,9A"; "Heaterfuel=";Heaterfuel$,"Ignitionfuel=";Ignitionfuel$,"Purge gas=";Purgegas$
5.000 PRINT USING "14A,DDDDDDDD.DDDD,5X,14A,DDDD.DDDD,5X,14A,DDDD.DDDD"; "Wtf1=";W
tfi, "Dp=";Do, "Lo=";Lp

5010 PRINT USING "14A,DDDD.DDDD,5X,14A,DDDD.DDDD"; "Di=";Di, "Dth=";Dth

5020 PRINT USING "14A,DDDD.DDDD,5X,14A,DDDD.DDDD,5X,14A,DDDD.DDDD,2X,14A,DDDD.DDDD,2X,14A,DDDD.DDDD,2X,14A,DDDD.DDDD,2X,14A,DDDD.DDDD,2X,14A,DDDD.DDDD,2X,14A,DDDD.DDDD,2X,14A,DDDD.DDDD,2X,14A,DDDD.DDDD,2X,14A,DDDD.DDDD,2X,14A,DDDD.DDDD,2X,14A,DDDD.DDDD,3X,14A,DDDD.DDDD,3X,14A,DDDD.DDDD"; "Daircho' e=";Daircho'e, "Dhtfu
 choke=";Dhfchoke
 5040 PRINT USING "14A,DDDD.DDDD,5X,14A,DDDD.DDDD";"Dhtoxchoke=";Dhochoke,"Dignf
  uchoke="
                           ;Difchoke
  5050 PRINT USING "14A,DBDD.DDDD"; "Dpungechoke="; Dpchoke
5060 PRINT USING "14A,DDDD.DDDD, 5X,14A,DDDD.DDDD, 5X,14A,DDDD.DDDD"; "Cdair=";Cda
in, "Coh=";Cdhf, "Cdho=";Cdho
Pif=";Rif, "Rp=";Rp
5110 PRINT USING "14A,DDDD.DDDD,5X,14A,DDDD.DDDD,5X,14A,DDDDD.DDDD"; "KAhf=";kahf
 "Kmif=";Kmif, "Kmp=";Kmp
"14A, DDDD. DDDD, 5X, 14A, DDDD. DDDD"; "Kmhe=";Kmhe, "Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=";Kmair=
                      ************************
  5178
                     !* VARIABLE CORRECTION
 5180
                     · ******************
                    PRINT USING "4/"
PRINT "CHECK ALL VALUES"
  5190
  5200
                    DISP "HIT 'CONTINUE' TO PROCEED TO CORRECTION OR NEXT SUBROUTINE"
  5210
  5220
                    PAUSE
 5230
                    INPUT "VARIABLE OK? (Y/N)", Zz$
                     IF Zis="N" THEN GOTO Changevariable
```

```
4000 Kpp=Ppmax/(Uppmax-Upp0)
4810 PRINT "Xpp="; Kpp
4020
          BEEP
4030 INPUT "READING OK? (Y/H)", Z7$
4040 IF Zzs="N" THEN GOTO Ppmaxcal
4050 Fcal: !
                    IF Ff=0. THEN GOTO Endcal
4050
4070
           PRINT "**CALIBRATION OF F, THE THRUST STAND LOAD CELL***
 4030
          4100 FOcal: !
4110 PRINT "****ZERO CALIBRATION****"
4120 PRINT "INSURE THAT THE 'ZERO' TARE WETGHT IS ON THE TRAY"
4130 DISP_"HIT CONTINUE WHEN READY"
          PAUSE
4140-
4150 PRHOTE 709

4150 OUTPUT 709; "ACS"

4170 OUTPUT 722; "T3"

4180 FNTER 722; Vf0

4190 PRINT "Vf0=":Vf0

4200 INPUT "READING OK? (Y/N)", Zz$
4210
         IF Zzs="N" THEN GOTO FOCAL
4920 Fmaxcal:
4230 PRINT USING "0"
4240 FRINT "****CALIBRATION****"
4250 PRINT "APPLY MAXIMUM WEIGHT TO THE TRAY"
           INPUT "ENTER THE MAXIMUM WEIGHT IN LBS", Fmax
4270
          DISP "HIT CONTINUE WHEN READY"
          PAUSE
 4288
#290 FHUDE 709

#290 GUTPUT 709; "ACS"

#310 OUTPUT 722; "T3"

#320 ENTER 722; Ufnax

#330 PRINT "Ufnax="; Vfnax, "Fnax="; Fnax

#340 Kf=Fnax/(Ufnax-Uf0)
4350
           PRINT "Kf=";Kf
 4360
 4370 INPUT "READING OK? (Y/N)",Zz$
 4350
           IF Zz$="N" THEN GOTO Fmaxcal
 4390 Endcal:
4400 PRINT "THIS ENDS THE CALIBRATIONS "
 4410
         1(3) PRE-RUN INPUTS, FLOW RATE SET-UP
4428
 4430
           | *********************
4440
            !A. PRE-RUN INPUTS
          4450
 4460 Inoutvariables:
         INPUT "DO YOU WANT TO INPUT NEW VARIABLES (Y/N)", Yys
IF Yys="N" THEN GOTO Nachange
PRINT "INPUT THE FOLLOWING TEST VARIABLES"
 4470
 4480
 4490
         PRINT "INPUT THE FOLLOWING TEST VARIABLES"
PRINT "STRING VARIABLES MUST BE ENCLOSED IN QUOTATION MARKS"
INPUT "THE TEST IDENTIFICATION NUMBER, A STRING VARIABLE", Testno$
INPUT "THE DAROMETRIC PRESSURE", Pbar
INPUT "THE BAROMETRIC PRESSURE", Pbar
INPUT "THE FUEL IDENTIFICATION, A STRING VARIABLE ", Fwelid$
INPUT "THE FUEL IDENTIFICATION, A STRING VARIABLE ", Heaterfuel$
INPUT "THE AIR HEATER FUEL TYPE, A STRING VARIABLE ", Ignitionfuelthus the String variable ", Ignitionfuelthus "The String Cast Type, A STRING VARIABLE ", Ignitionfuelthus "The Purge Gas Type, A STRING VARIABLE ", Purgegas$
INPUT "THE INITIAL FUEL GRAIN MEIGHT (LRM)", Wifield INPUT "THE INITIAL FUEL GRAIN INTERNAL DIAMETER (IN)", Dp
INPUT "THE INITIAL FUEL GRAIN LENGTH (IN)", Lp
INPUT "THE AIR INLET DIAMETER (IN)", D1
INPUT "THE MOTOR THROAT DIAMETER (IN)", D1
 4500
 4530
 4540
 4560
4578
                                                                                                                 ,Ignitionfuel$
 4590
 4590
 4500
 4610
           INPUT "THE MOTOR THROAT DIAMETER (IN)", Dth
INPUT "THE DESIRED AIR INLET TEMPERATURE (R)", Tid
INPUT "THE DESIRED IGNITION DELAY TIME (SEC)", TMA
 4520
 4530
 4540
           INPUT "THE DESIRED IGNITION TIME (SEC)", THI
INPUT "THE DESIRED BURN TIME (SEC)", THO
INPUT "THE DESIRED PURGE TIME (SEC)", THO
4650
 4650
```

```
3320 ENTER 722: Uphomax
       PRINT "Uphomax="; Uphomax, "Phomax="; Phomax
Kaho=Phomax/(Uphomax-Upho8)
3330
3340
       PRIMT "Kpho=";kpho
3350
3350
       BEEP
3370 INPUT "READING OK? (Y/N)",Zz$
3380 IF Zz$="N" THEN GOTO Phomaxcal
3390 Pifcal:!
3400
       3410 PRINT ***CALIBRATION OF PIF, THE SFRI IGNITION FUEL PRESSURE TRANSDUCER***
        3428
3430 Pifocal: !
3440 PRINT "****ZERO CALIBRATION****"
3450 PRINT "INSURE THAT NO PRESSURE IS APPLIED TO THE TRANSDUCER"
3460 DISP "HIT CONTINUE WHEN READY"
       PAUSE
3470
3470 PAUSE

3480 REMOTE 709

3490 OUTPUT 709; "AC6"

3500 OUTPUT 722; "T3"

3510 ENTER 722; Vpif0

3520 PRINT "Vpif0="; Vpif0

3530 INPUT "READING GK? (Y/N)", Zz$

3540 IF Zzs="N" THEN GOTO Pif0cal
3550 Pifmaxcal:
3560 PRINT USING "9"
3570 PRINT "****CALIBRATION****"
       PRINT "*****LALIBKATION****"
PRINT "APPLY THE MAXIMUM PRESSURE USING DEAD-WEIGHT TESTER"
THPUT "ENTER THE MAXIMUM PRESSURE IN psig", Pifmax
DISP "HIT CONTINUE WHEN READY"
PAUSE
 90زي
       PAUSE
REHOTE 709
OUTPUT 709; "AC6"
OUTPUT 722; "T3"
ENTER 722; "pifmax
PRINT "Vpifmax="; Vpifmax, "Pifmax="; Pifmax
Kpif=Pifmax/(Vpifmax-Vpif0)
PRINT "Kpif="; Kpif
REED
3820
3630
3640
3550
3680
3590 BEEP
3700 INPUT "READING OK? (Y/N)",Zz$
3710 IF Zz$="N" THEN GOTO Pifnaxcal
3720 Prcal: !
3730
       3740 PRINT "**CALIBRATION OF Pp, THE SFRJ PURGE GAS PRESSURE TRANSDUCER**"
3800 PAUSE
3810 REMOTE 709
3820 OUTPUT 709; "AC7"
3830 OUTPUT 722; "T3"
3840 ENTER 722; Vpp0
3850 PRINT "Vpp0="; Vpp0
3850 INPUT "READING DX? (Y/N)", Zz$
3870
       IF Zz$="N" THEN GOTO Procaí
3890 Prmaxcal: 1990 PRINT USING "8" 3900 PRINT "****CALIDRATION****
3910 PRINT "APPLY THE MAXIMUM PRESSURE USING DEAD-WEIGHT TESTER" 3920 THPUT "ENTER THE MAXIMUM PRESSURE IN DS19", PPMAX
       DISP "HIT CONTINUE WHEN READY"
3930
3940
      REMOTE 709
OUTPUT 709; AC7 OUTPUT 722; T3*
ENTER 722; PDPAAX
3950
3960
3970
3980
       PRINT "Voomax="; Voomax, "Pomax="; Pomax
```

```
2640 WAIT 2
2650 OUTPUT 722; "T3"
2660 ENTER 722; Uphmax
2670 PRINT "Vphmax="; Uphmax, "Phmax="; Phmax
                              Koh=Phmax/(Vphmax-Vph0)
PRINT "Kph=";Kph
    2700 BEEP
2710 INPUT "READING OK? (Y/N)", Zz$
2720 IF Zz$="N" THEN GOTO Phmaxcal
2730 Phfcal:!
   PAUSE
      2910
  2810 PAUSE
2820 REMOTE 709
2830 CUTPUT 709; "AC3"
2840 CUTPUT 722; "T3"
2850 ENTER 722; Vphf0
2860 PRINT "Vphf0="; Vphf0
2870 INPUT "READING OK? (Y/N)", Zz$
2880 IF Zz$="N" THEN GOTO Phf0cal
     2890 Phfmaxcal:
  2970 PRINT USING "B"
2910 PRINT "****CALIBRATION****"
2910 PRINT "****CALIBRATION****"
2920 PRINT "APPLY THE MAXIMUM PRESSURE USING DEAD-WEIGHT TESTER"
2930 INPUT "ENTER THE MAXIMUM PRESSURE IN psig", Phfmax
2940 DISP "HIT CONTINUE WHEN READY"
 2940 DISP "HIT CONTINUE WHEN READY"
2950 PAUSE
2960 REMOTE 709
2970 OUTPUT 709; "AC3"
2990 OUTPUT 722; "T3"
2990 ENTER 722; Vohfmax
3000 PRINT "Vphfmax="; Vphfmax, "Phfmax="; Phfmax
3010 Kphf=Phfmax/(Vphfmax-Vphf0)
3020 PRINT "Kphf="; Kphf
3030 REFP
    3030 BEEP
  3040 INPUT "READING OK? (Y/N)",Zz$
3050 IF Zz$="N" THEN GOTO Phfmaxcal
   3060 Phocal:!
   3090
   3100 PhoOcal: !
 3110 PRINT "****ZERD CALIBRATION****"
3120 PRINT "INSURE THAT NO PRESSURE IS APPLIED TO THE TRANSDUCER"
3130 DISP "HIT CONTINUE WHEN READY"
                           PAUSE
3148 PAUSE
3150 PEMOTE 709
3160 OUTPUT 709; "AC4"
3170 OUTPUT 722; "T3"
3180 ENTER 722; "Pho 0
3190 PRINT "Upho 0="; "Upho 0
3200 INPUT "READING 7K? (Y/N)", Zz$
3210 IF Zz$="N" IHEN GOTO Phoocal
3210 IF LIDER OF THE RESERVENCE IN DESCRIPTION OF THE RESERVENCE IN DEAD-WEIGHT TESTER TO THE MAXIMUM PRESSURE USING DEAD-WEIGHT TESTER TO THE MAXIMUM PRESSURE IN DEAD THE PAUGE TO THE MAXIMUM PRESSURE IN DEAD THE PROPERTY PR
 3290
3290
                         REMOTE 709
OUTPUT 709; "AC4"
OUTPUT 722; "T3"
  3300
3310
```

```
Kpa=(Pamax)/(Upamax-Upa0)
PRINT "Kpa= ";Kpa
1980
        REEP
       INPUT "READING OK? (Y/N)", Zzs
IF Zzs="n" THEN GOTO Pamaxcal
1990
2000
2010 Pccal:!
2030
2040
        PRINT ***CALIBRATION OF Pc, THE SFRI MOTOR CHAMBER PRESSURE TRANSDUCER***
        2050 PcOcal: !
       PRINT "**** ZERO PRESSURE ****"
PRINT "INSURE THAT NO PRESSURE IS APPLIED TO THE TRANSDUCER"
DISP "HIT CONTINUE WHEN READY"
2069
2080
        PAUSE
REMOTE 709
OUTPUT 709; "ACO"
2090
2100
2110
2120
        WAIT 2
        OUTPUT 722; "T3"
ENTER 722; Vpc0
2130
2140
        PRINT "Vpc 0="; Vpc 0
2150
2160
        THPUT "READING OK? (Y/N)",Zz$
IF Zz$="N" THEN GOTO PCOcal
2170
2180
2190 Pcmaxcal:
2200 PRINT USING "@"
2210 PRINT " **** CALIBRATION *****
2220 PRINT "APPLY THE MAXIMUM PRESSURE USING DEAD-WEIGHT TESTER"
2230 INPUT "ENTER THE MAXIMUM PRESSURE IN psig", Pcmax
        DISP "HIT CONTINUE WHEN READY PAUSE
        REMOTE 709
OUTPUT 709; "ACO"
2270
        WAIT 2
OUTPUT 722: "T3"
 2280
2290
        ENTER 722; Vpcmax
PRINT "Vpcmax="; Vpcmax, "Pcmax="; Pcmax
Koc=Pcmax/(Vpcmax-Vpc0)
PRINT "Kpc="; Kpc
 2300
2310
2320
 2330
 2340
         BEEP
2350
2350
        INPUT "READING DX? (Y/N)",Zz$
IF Zz$="N" THEN GOTO Pchaxcal
 2370 Phcal:!
2320
        PRINT ***CALIBRATION OF Ph. THE SERJ MOTOR HEAD-END PRESSURE TRANSDUCER'S
 2390
         2400
 2410 PhOcal: !
        PRINT "****ZERO PRESSUKE****"
PRINT "INSURE THAT NO PRESSURE IS APPLIED TO THE TRANSDUCER"
DISP "HIT CONTINUE WHEN READY"
2420
2440
        PAUSE.
 2450
        REMOTE 709
OUTPUT 709; "AC1"
 2460
 2470
        WAIT 2
OUTPUT 722; "T3"
ENTER 722; Vph0
PRINT "Vph0="; Vph0
 2480
 2498
 2500
2510
2520
2530
2540
         BEEP
        INPUT "READING OK? (Y/N)", Zz$
        IF Zz$="N" THEN GÓTO PhOcal
 2550 Phmaxcal:
2550 PRHAYCAI: !
2550 PRINT USING "@"
2570 PRINT "****CALIBRATION****"
2580 DISP "APPLY THE MAXIMUM PRESSURE USING DEAD-WEIGHT TESTER"
2590 INPUT "ENTER THE MAXIMUM PRESSURE IN Psig",Phmax
2600 DISP "HIT CONTINUE WHEN READY"
2610 PAUSE
 2620
        REMOTE 709
OUTPUT 709: "AC1"
```

```
1350
21+743
                  I' U:1:3)=.03509 AHD Volts(.00831 THEN T=((Volts-.00609)/.000022
1 760
                  IF Vilis)=.03831 AND Volts(.01056 THEN T=((Volts+.00831)/.000022
51+848
1370
                  IF Volts)=.01055 AND Volts(.01285 THEN T=((Volts-.01056)/.000022
9)+940
1380
                  IF Volts)=.01285 AND Volts(.01518 THEN T=((Volts-.01285)/.000023
3)+1050
1370
                  IF Volts>=.01518 AND Volts(.01752 THEN T=((Volts-.01518)/.000023
4)+1150
1 180
                  IF Volts)=.01752 AND Volts(.01988 THEN T=((Volts-.01752)/.000023
6)+1260
1410
                  IF Volts)=.01989 AND Volts(.02225 THEN T=((Volts-.01988)/.000023
7)+1360
1420
                  IF Valts),02225 THEN GOTO Toohigh
          RETURN
1438
1440 Toohigh:
                    PRINT "TEMPERATURE SET AT 1468 R" PRINT "I=", I
1450
1460
1470
                    35 F 500, 1
                    T=144 C
1436
1490
                    WATE 1
REET 700, 1
1500
1510
                       tire ij
1520 Transcal: 1
1530
      1540
      11(3) TRAMSTICER FALIBRATIONS
1550
1560
      THERE APE & PRECEDRE TRANSDUCERS AND ONE CHAD CELL FOR THOUST WHICH THUST BE CALIBRATED. TRANSDUCER LINEARITY MUST BE VERIFIED BEFORE THIS TO ALTERATION PROCEDURE IS EMPLOYED. THE ORDER OF CALIBRATION IS AS
1570
      1570
1600
1610
      CLEAR 722 | CLEAR 3456A DIGITAL VOLTMETER
REMOTE 709 | HAKE 3497A UNIT TO REMOTE MODE
OUTPUT 722; "LIR31STNZ110STIT40X1" | 10 READING PER TRIGGER AND STORE
1620
1630
1540
1650 Pacal: !
1650
      PRINT *** CALLERATION OF Pa, THE AIR SONIC CHOKE PRESSURE TRANSDUCER "
       *****************
1680
1690 Pa0cal: 1
1700 PRINT "****** Z E R O P R E S S U R E *****"
1710 PRINT "INSURE THAT NO PPESSURE IS APPLIED TO THE TRANSDUCER"
1720 DISP "HIT CONTINUE WHEN READY TO TAKE ZERO READING"
      PAUSE
1730
      REMOTE 709
OUTPUT 709; "AC2"
1740
1750
1760
1770
                               I ADMIRE CHANNEL 2
       BAIT 2
      CUTPUT 722; "13"
ENTER 722; Voa0
                               ! INITATE SINGLE TRIGGER
                               ! READ VOLTACE
1780
      PRINT "Upa0="; Upa0
1790
1800
       BEFP
       INPUT "READING DK? (Y/N)", Zz$
1810
      IF Zz$="N" THEN GOTO Pa0cal
Pamaxcal: |
1820
1830 Pamaxcal:
      PRINT USING "8"
                              I CLEAR SCREEN
1840
                   ***** CALIBRATION *****
1850
      PPINT "APPLY MAXIMUM PRESSURE USING THE DEAD-WEIGHT TESTER"
INPUT "ENTER THE MAXIMUM PRESSURE IN peig", Pawax
1840
1870
       DISF "HIT CONTINUE WHEN READY"
1890
1990
       PAUSE
      REMOTE 709
1790
       OUTPUT 709; "AC2"
1710
       WAIT 2
      OUTPUT 722; "T3"
1930
      ENTER 722: Voamax
1740
      PRINT "Vpamax="; Upamax, "Pamax= "; Pamax
```

```
TIME BETWEEN SFRI AIR FLOW AND IGNITION, SEC BURN TIME AFTER THI, SEC IGNITION DURATION AFTER THA, SEC
690
               Tma
700
               Twb
710
720
730
               Tri
                                           PURGE DURATION AFTER TMb, sec
TEMPERATURE, PURGE GAS SONIC CHOKE, R
INITIAL FUEL GRAIN WEIGHT, Lbm
               TAD
               Tp
740
               Wifi
750
760
         BEEP 1000,.1
PRINT USING "8"
PRINT USING "6/"
770
780
790
             THE RECORDED VARIABLES (VOLTAGES) AND LOCATIONS ARE: (NOTE: THE MAXIMUM ALLOWABLE VOLTAGE INTO THE SYSTEM IS 1.2 VOLTS)
800
          PRINT *
819
820
830
848
850
                                                                        3497 DACU SCANNER NUMBER 8
             VARIABLE
860
870
             Pc
             Ph
890
             Phf
890
900
             Pho
 910
             Pif
920
             Pp
F
930
940
950
             Ta
          ! Thf
950
970
             Tho
                                                                        11
8
             Ti
980
             Tif
 990
             T٥
1000
 1010
          FALL FLOW RATES ARE CALCULATED USING THE ONE-DIMENSIONAL, ISENTROPIC IFLOW EXPRESSIONS WITH FIXED PROPERTIES. SHALL SUNIC NOZZLES HAVE IMEASURED DISCHARGE COFFFICIENTS. THE AIR FLOW NOZZLE USES AN ASSUMED DISCHARGE COEFFICIENT (Cd) OF 0.97.
 1020
 1030
 1040
1050
1050
 1070
           !M (LBM/SEC)=Cd*P*A*Km/T^.5
 1080
 1090
          IKM IS THE GAS-DEPENDENT SONIC CHOKE FLOW RATE CONSTANT
 1100
 1110
           !Km=SQR((Gamma*Gc/R)*(2/(Gamma+1))^((Gamma+1)/(Gamma-1)))
 1120
 1130
             APPROPRIATE CONSTANTS ARE:
 1140
 1150
                                                                                           GAMMA
                           MOLECULAR WT.
                                                      GAS CONST.
                                                                               CP
                                                                                                             Km
             GAS
 1150
1170
                                                                                                             .5320
.5589
.3876
                                                        53.3
48.3
                                                                             .240
,217
              AIR
                                 32.0
                                                                                             1.41
 1180
             02
                                                                                             1.32
                                                        95.4
                                                                             .593
 1190
             CH4
                                 16.03
                                                        55.1
38.7
                                                                             .400
 1200
1210
                                 28.03
39.9
             C2H4
                                                                                                              . 4985
                                                                                             1.67
              ARGON
                                                                             .124
                                                                                                              . 6626
 1220
1230
1240
1250
1250
          !ALL THERMOCOUPLES USED ARE CHROMEL vs ALUMEL (TYPE K) WITH DELECTRONIC ICE POINTS. TEMPERATURE READINGS (VGLTAGES) ARE !CONVERTED TO DECREES RANKINE (R) PER "INDUSTRIAL INSTRUMENTATION" BY !D.P. ECKMAN (PAGE 369). THIS CALCULATION IS PERFORMED IN SUBROUTINE !TCalc. TEN VOLTAGE INTERVALS ARE USED BETWEEN 460 AND 1460 R.
 1280
           Gc=32.174
 1290
                                   ! POST RUN CONTROL FLAG
 1300 GOTO Transcal
 1310 Trale:
 1320
1330
0)+560
                            IF Volts(.00153 THEN T=((Volts+.00058)/.0000220)+460
                            IF Volts)=.00153 AND Volts(.00382 THEN T=((Volts-.00153)/.000423
 1340
                            IF Volts)=.00382 AND Volts(.00609 THEN T=((Volts-.00382)/.0000?2
 7)+660
```

APPENDIX A

COMPUTER PROGRAM FOR EXPERIMENT CONTROL AND DATA REDUCTION

```
ISFRITEST
ISOLID FUEL RAMJET DATA ACQUISITION AND DATA REDUCTION PROGRAM,
ITHIS PROGRAM IS DIVIDED INTO FIVE PARTS:

(1) VARIABLE DEFINITIONS AND NOMENCLATURE

(2) TRANSDUCER CALIBRATIONS

(3) PRE-RUN INPUTS, FLOW SET-UPS

(4) THE TEST SEQUENCE AND DATA COLLECTION

(5) POST-RUN OPERATIONS
10
20
30
40
58
60
70
80
                    :(1) VARTABLE DEFINITIONS AND NOMENCLATURE
 110
                    SYMBOL
                                                                                                      DEFINITION
                                                                                  ANALOG CHANNEL NUMBER
DISCHARGE COEFFICIENT, TAIR SONIC CHOKE
DISCHARGE COEFFICIENT, HEATER FUEL SONIC CHOKE
DISCHARGE COEFFICIENT, DXYGEN MAKE-UP SONIC CHOKE
DISCHARGE COEFFICIENT, IGNITION FUEL SONIC CHOKE
DISCHARGE COEFFICIENT, PURGE GAS SONIC CHOKE
                             Cdair
                             Cdhf
                              Cdho
                             Cdif
  180
190
                             Cdp
                                                                                   THRUST COEFFICIENT
THEORETICAL C*, FT/SEC
C* FOR AIR FLOW BASED ON Direct
AIR SONIC CHOKE DIAMETER
                              Cf
                              Cstarth
                              Cstarair
                              Dairchoke
                                                                                   AIR SUNIC CHUKE DIAMETER
Test Date 'Mo-Dav-Yr
AIR HEATER FUEL SONIC CHOKE DIAMETER
OXYGEN MAKE-UP SONIC CHOKE DIAMETER
MOTOR INLET DIAMETER, IN.
IGNITION FUEL SONIC CHOKE DIAMETER
MOTOR FUEL PORT DIAMETER, IN.
PURGE GAS SONIC CHOKE DIAMETER
MOTOR SXHAUST NOZZLE THROAT DIAMETER, IN.
EFFECTIVE THROAT DIAMETER, IN.
THRUST
                               Date$
                               Dhfchoke
                               Dhochoke
                               Di
                               Difchoke
                                Dp
                               Dochoxe
                               Dth
                                                                                  THRUST
FUEL IDENTIFICATION
GRAVITATIONAL CONSTANT (32.174)
FUEL IDENTIFICATION
GRAVITATIONAL CONSTANT (32.174)
FUEL IDENTIFICATION
SFRJ ICHITTON FUEL I.D
AIR SONIC CHOKE FLOW RATE CONSTANT
HEATER FUEL SONIC CHOKE FLOW RATE CONSTANT
OXYGEN MAKE-UP SONIC CHOKE FLOW RATE CONSTANT
IGNITION FUEL SONIC CHOKE FLOW RATE CONSTANT
FURE GRAS SONIC CHOKE FLOW RATE CONSTANT
FUEL GRAIN LENGTH. IN.
AIR FLOW RATE, LSM/SEC
DESIRED AIR FLOW RATE, Lbm/sec
HEATER FUEL FLOW RATE, Lbm/sec
DESIRED HEATER FUEL FLOW RATE Lbm/sec
IGNITION FUEL FLOW RATE, Lbm/sec
IGNITION FUEL FLOW RATE, Lbm/sec
IGNITION FUEL FLOW RATE, Lbm/sec
DESIRED IGNITION FUEL FLOW RATE, Lbm/sec
PURGE GAS FLOW RATE, Lbm/sec
PURGE GAS FLOW RATE, Lbm/sec
                               Dtheff
                               Fuelid$
                                Heaterfuel$
                                Ignitionfuel$
                                Knair
                                Kahf
                                Kahe
     480
                                Kmif
                                Kno
     410
     420
                                Lo
     430
                                Mair
     441
                                 Maird
     450
                                 Mhf
                                 Hhfd
                                 Mho
     480
                                 Mhod
     498
                                 Mif
     500
                                 Mifd
                                                                                     DESIRED IGNITION FUEL FLOW RATE, Lbm/sec
PURGE CAS FLOW RATE, Lbm/sec
DESIRED PURGE CAS FLOW RATE, Lbm/sec
PRESSURE, AIR SONIC CHOKE, Psia
BAROMETRIC PRESSURE, Psia
PRESSURE, CHAMBER, Psia
PRESSURE, HOTOR HEAD—END, Psia
PRESSURE, HEATER FUEL SONIC CHOKE, Psia
PRESSURE, HEATER DAYGEN SONIC CHOKE, Psia
PRESSURE, IGNITION FUEL SONIC CHOKE, Psia
PRESSURE, PURGE CAS SONIC CHOKE, Psia
PURGE CAS I.D
     510
                                  ۲'n
      520
530
                                  Mod
                                 Pbar
       540
                                 Pc
       550
                                  Ph
       550
                                  Phf
                                  Pho
       580
                                 Pif
      598
       600
                                  P٥
                                                                                       PURGE GAS I.D
TEMPERATURE, AIR SONIC CHUKE, R
      610
                                  Purgegas$
       520
                                                                                         TEST I.D NO.
      630
                                   Testnes
                                                                                         TEMPERATURE, HEATER FUEL SONIC CHOKE, R
TEMPERATURE, OXXYGEN MAKE-UP SONIC CHOKE, R
TEMPERATURE, MOTOR AIR INLET, R
                                   Thf
       640
       658
                                   The
       660
                                   Ti
                                                                                        TEMPERATURE, DESIRED MOTOR AIR INLET. R
TEMPERATURE, IGNITION FUEL SONIC CHOKE, R
       670
                                   Tid
```

VI. CONCLUSIONS AND RECOMMENDATIONS

Additional tests using fuel-wall and step face injection of oxygen, gaseous fuel and/or heated air should be conducted to verify the initial results found in this investigation. However, the initial data from this investigation indicates that gaseous injection is not a viable tecnique for fuel regression rate control.

Fuel regression rate was found to be quite sensitive to small amounts of inlet air swirl without large changes in combustion efficiency. Additional testing is recommended.

Thrust Calibration Curve, Measured vs Actual. Figure 5.1

		Table 3	9			
Š	Summary of Experimental Data (cont'd.)	Experimenta	al Data (c	ont'd.)		
nu	27	1	12	30	31	1 32
	69.0	0.70	0.82	0.81	0.79	1.374
Pc (psia)	55.4	59.1	57.7	55.9	55.8	101.8
PEPCODE results						
Tth (R)	3398	3917	3737	3724	3662	4283
م ر	1.265	1.254	1.256	1.256	1.258	1.257
R (ft Lbf/Lbm*R)	56.18	55.93	54.93	53.27	55.68	56.82
Efficiency (based on Pc, analog)	83.4	81.5*	78.9	100	85.5	82;7** (78.7)**
* based on Pc, dig: ** based on F , ana	digital analog	_	_	_	_	_

```
PRINT USING "11A,DD.DDDDD"; "Hairinject="; Mho
PRINT USING "18A,DD.DDDDD"; "Mho DESIRED="; Hnod
7210
7220
7230
               Ratio=Mho/Mhod
7240
              PRINT USING "30A, DDDD.DDDD,3x,4A,DDDD.DD,1A"; "Mho/Mho DESIRED=",Rat
10."Tho=";Tho,"R"
7250 Pg=Pho-Pbar
7260
;"Tho=";Tho;"R
!N
               PRINT USING "5A,DDDD.DD,1X,5A,5X,4A,DDDD.DD,1X,2A"; "Pho=";Pg; "Psig"
              'IÑPUT "IS THE HEATER OXYGEN FLOW RATE ENOUGH? (Y/N)?",Xx$
IF Xx$="Y" THEN GOTO Phofin
 7280
 7290
               Phoney=(Pho*Mhod/Mho)-Phar
              DISP "HIT CONTINUE AFTER RESET OF Pho" PAUSE
 7300
               PRINT USING "14A, DDDD, DD, 1X, 4A"; "RESET Pho TO "; Phonew; "Psig"
7310
 7320
7330
              GOTO Phoset
 7340 Phofin:!
 7350
        DISP "HIT CONTINUE TO PROCEED TO NEXT FLOW RATE SET UP"
        PAUSE
 7360
7370 Phoskip:
        PRINT USING .
 7380
7390
        INPUT *DO YOU WANT TO PRESET THE IGNITION FUEL FLOW RATE?(Y/N)*,Zz$
 7400
         IF Zz$="N" THEN GOTO Pifskip
 7410
         PRINT " SET THE DESIRED VALUE OF PIF USING THE HAND LOADER PRESSURE GAGE"
 7420
         ***********************
 7430
        DISP "HIT CONTINUE WHEN READY"
 7440
        PAUSE
 7450
 7460 Pifset:!
        PRINT "MANUALLY TURN ON ' IGN. GAS ' SWITCH"
DISP " HIT CONTINUE WHEN READY"
 7479
 7480
 7499
        PAUSE
 7500
7510
         CUTPUT 709; "AC5"
        HATT 1
        MAII 1
OUTPUT 722; "T3"
ENTER 722; Vpif
OUTPUT 709; "AC12"
OUTPUT 722; "T3"
ENTER 722; Vtif
 7520
 7530
7540
 7550
 7560
7570
         REEP
         PRINT "MANUALLY TURN OFF 'IGN GAS' SWITCH"
 7580
         DISP "HIT CONTINUE TO PROCEED"
 7590
        PAUSE
 7600
 7610
         Pif=(Upif-Upif0)*Kpif+Pbar
 7620
         Volts=Utif
 7630
        GOSUB Tcalc
         Tif=T
 7640
        Mif=Kmif*Cdif*Pif*.7854*(Difchoke^2)/(Tif^.5)
PRINT USING "8"
PRINT USING "4A,DD.DDDDD"; "Mif="; mif
PRINT USING "15A,DD.DDDDDD"; "Mif DESTRED="; Mifd
 7650
 7660
 7670
 7580
 7690
         Ratio=Mif/Mifd
 7700
         PRINT USING *17A,D.DDD,3X,4A,DDDD.DDD,1A*; "Mif/Mif DESIRED=";Ratio, "Tif="
 ;tif,
7710
         PRINT USING "4A,DDDD.DD,1X,4A,5X,4A,DDDD.DD,1X,1A"; "Pif=";Pg; "Pisg"; "Tif=
 7720
 ":Tif;
         INPUT "IS THE SFRJ IGNITION FUEL FLOW RATE ACCURATE ENOUGH? (Y/N)", Xx$ IF Xx$="Y" THEN GOTO Piffin
 773ã
 7740
 7750
7760
         Pifnew=(Pif*Mifd/Mif)-Pbar
         PRINT USING "124, DDDD.DD, 1X, 4A"; "RESET Pif TO"; Pifnew; "Psig"
         DISP "HIT CONTINUE AFTER RESET OF PIF"
 7770
 7780
         PAUSE
 7790
         GOTO Pifset
 7800 Piffin:!
         DISP "HIT CONTINUE TO PROCEED TO NEXT FLOW RATE SET UP"
 7810
         PAUSE
 7820
 7830 Pifskin:
         PRINT USING "@"
 7840
```

```
INPUT "DO YOU WANT TO PRESET THE PURGE FLOW RATE? (Y/N)", Zz$
         IF Z78="N" THEN GOTO Poskip
7860
7870
7830
         PRINT "SET THE DESIERD VALUE OF PD USING THE HANDLOADER/PRESSURE GAGE"
7890
7900
         DISP "HIT CONTINUE WHEN READY"
7918
         PAUSE
7920 Ppset:!
          CLEAR 709
OUTPUT 709; "DC10,1"
7930
7940
7950
          MAII 2
OUTPUT 709; "AC7"
OUTPUT 722; "T3"
ENTER 722; Vpo
OUTPUT 709; "AC13"
OUTPUT 722; "T3"
ENTER 722; Vtp
OUTPUT 769; "DO10,1"
7960
7970
7983
7998
8000
8010
          Pp=(Upp-Upp0)*Kpp+Pbar
Volts=Vtp
8030
8640
8050
          GOSUB Tcalc
8068
          Ta=T
          Hp=Kmp*Cdp*Pp*.7854*(Dpchoke^2)/(Tp^.5)
PRINT USING "8"
PRINT USING "3A,DD.DDDDD"; "Hp="; Hp
PRINT USING "13A,DD.DDDDD"; "Hp DESIRED="; Hpd
8070
1998
8070
8106
8110
           PRINT USING "16A,D.DD,3X,3A,DDDD.DD,1A";"Mp/Mp DESIRED =";Ratio,"Tp=" Tp
8130
           BEEP
8140
8150
          Pg=Pp-Pb-r
PKINT USING "3A,DDDD.DD,1X,4A,3X,4A,DDDD.DD,1X,1A";"Pp=";Pg;"Psig","Tp="
;Tp;*R*
          INPUT "IS THE PURGE GAS FLOW RATE ACCURATE ENOUGH? (Y/N)", Xx$ IF Xx$="Y" THEN GOID Ppfin
8160
8170
          Ppnew=(PpMpd/Mp)-Pbar
PRINT USING "16A, DDDD, DD, 1X, 4A"; "RESET Pp TO"; Ppnew; "Psig"
DISP "HIT CONTINUE AFTER RESET OF Pp"
8180
8190
8200
          PAUSE
8210
           GOTO Poset
8230 Ppfin: !
8240 Poskip:
               PRINT "THIS COMPLETES PRE-RUN SET-UP"
8250
8270 ! (4) THIS PORTION OF THE PROGRAM RUNS THE TEST AND COLLECTS THE DATA
8290 1
8300
         DISP "SET TIMEDATE BY PRESSING K19 AND UPDATE, THEN EXECUTE, THEN HIT CON
8310
TINUE"
8320
         BEEP
8330
         PAUSE
         CLEAR 709
8340
         CLEAR 722
8350
         THE FOLLOWING PROGRAMS THE 3456A DVM
OUTPUT 722: "LIZODOFIOSTDPOFLOR3.10STIISTNSOITAQX1"
PRINT "THE DESIRED RUN TIMES AND DELAYS NOW BE INPUT"
8330
8390
         THPUT "ENTER Tma, Tmi, Tmb, Tmp SEPARATED BY COMMA, THEN HIT CONTINE", Tma, Tmi
 Imb, Imp
                                                 ! ONE HORE SECOND FOR TAIL PART READING
8400
         Tshut=Tma+Tmi+Tmb+Tmp+1
8410
         T4=Tma+Tmi
         T5=T4+Tmb
8420
8430
          16=15+1mp
8440
         OPTION BASE 1
8450
         DIM In(500,14)
                                                 ! STORAGE DEFINITION
8450
         J=1
8478
         A=1
                                                 ! CONTROL FLAGS
8430
         A1=0
```

```
8490
           A2=0
 8500
           A3=0
 8510
           A4=0
          V14=0
PRINT USING *@*
DISP *TO INITIATE RUN, PUSH 'PRI-AIR SWITCH' *
ionitor: ! WAIT UNTIL INITIATE
OUTPUT 709; *AC14*
CUTPUT 722; *T3*
ENTER 722; V14
TE U14) = 5 THEN GOTO Startrun ! IF
 8520
           V14=6
 8530
 8548
 8558 Honitor:
 8560
 8570
 8580
 8590
                                                                             ! IF INITIATE RUN, IT WILL GIVE
  0.8 VOLTS
 8600
                           GOTO Monitor
 8610 Startrun: 1
                        TO=TIMEDATE
 8630 ON CYCLE .5 GOSUB Data
8640 ON DELAY TShut GOTO Shutdown
8650 Timewalt: ! WAIT 0.5 SECOND
 8660
                        A=A+1
                GEATI

GOTO Timewait

:! READ ALL DATA EVERY 0.5 SECONDS
OUTPUT 709; "ACCAFCALIS"
FOR I=1 TO 14
OUTPUT 722; "T3"
ENTER 722 USING "#,K"; In(J,I)
OUTPUT 709; "AS"
NEXT Y
 8670
 8580 Data: !
 8690
 8700
 8710
 8720
8730
8740
                NEXT I
 8750
8760
8770
                J=J+1
T1=TIMEDATE
                 IF A1=1 THEN GOTO Tmabypass
                  IF DROUND(T1-T0,3))=Tma THEN OUTPUT 709; DC10,2* OUTPUT 709; DC10,3*
 9780
8790
 8800
 8818
                     A1=1
8658
                  END IF
 8990
                   END IF
 8910 TAbypass: !
8920 TI=TIMEDATE
                IF A3=1 THEN GOTO T5bypass
IF DROUND(T1-T0,3))=T5 THEN
OUTPUT 709; "DC10,1"
 8930
 8940
 8950
 8950
                     A3=1
 8970
                    END IF
 8980 T5bypass: !
 8990
                 TI=TIMEDATE
                IF A4=1 THEN GOTO TABURDASS
IF DROUND(T1-T0,3))=T6 THEN
OUTPUT 709; "DG10,1"
OUTPUT 709; "DC10,0"
 9000
 9010
 9020
 9030
 9340
                     A4=1
 9050
                END IF
 9060 T6bypass:
 9070
                        GOTO 9080
                                             !* THIS NUMBER WILL BE CHANGED WHEN RENUMBER.
             RETURN
 9080
 9090 Shutdown:
                          OFF CYCLE
 9100
 9110
9120
                          Jmax=J-1
                          PRINT USING "@"
                          PRINT * TEST COMPLETE, TURN OFF 'MAIN-AIR', AND TURN OFF 'HEATER
 9130
  GASES'
 9140
                          BEEP
```

```
9150 | **********
                          !* (5) POST-RUN OPERATION
   9170 | ****************
                                                                             DISP "HIT CONTINUE TO PROCEED TO DATA REDUCTION" PAUSE
    9150
   9170
                                                                             OUTPUT 709; *D010,0*
PRINTER IS 701
    9200
   9210
                             PRINT USING 3/
    9230
   9230
                                                                                                                                                                             **** PRE-RUN INPUT
9240 PRINT USING "2/"
9240 PRINT USING "14A,9A,5X,14A,9A,5X,14A,9A,2X,14A,DDDD.DDDD";"Testno=";Testno
$, "Date=";Date$, "Fuelid$=";Fuelid$, "Pbar=";Pbar
9250 PRINT USING "14A,9A,5X,14A,9A,5X,14A,9A,5X,14A,9A";"Heaterfuel=";Heaterfue
19, "Ignitionfuel=";Ignitionfuel$, "Purge gas=";Purgegas$
9270 PRINT USING "14A,DDDD.DDDD,5X,14A,DDDD.DDDD,5X,14A,DDDD.DDDD";"Wifi=";4-ti
7270 FKIRT USING 144,0000.0000,5x,144,0000.0000";"Di=";Di,"Dth=";Dth
7280 PRINT USING "144,0000.0000,5x,144,0000.0000,5x,144,0000.0000,2x,144,0000.0000,2x,144,0000.0000,2x,144,0000.0000,2x,144,0000.0000";"Tha=";Tha=";Tha=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi=";Thi="
  chake=";Ohfchake
  9310 FRINT USING "14A,DDDD.DDDD,5X,14A,DDDD.DDDD"; "Dhtoxchoke=";Dhochoke, "Dignf
vchoke=";Difchoke
9320 PRINT USING "14A,DDDD.DDDD";"Dpurgechoke=";Dpchoke
9330 PRINT USING "14A,DDDD.DDDD,SX,14A,DDDD.DBDD,5X,14A,DDDD.DDDD";"Cdair=";Cda
ir,"Cdh=";Cdhf,"Cdho=";Cdho
9340 PRINT USING "14A,DDDD.DDDD,SX,14A,DDDD.DDDD";"Cdp=";Cdp,"Cdif=";Cdif
9350 PRINT USING "14A,DDDD.DDDD,SX,14A,DDDD.DDDD";"Cdp=";Cdp,"Cdif=";Cdif
9350 PRINT USING "14A,DDDD.DDDD,SX,14A,DDDD.DDDD,SX,14A,DDDD.DDDD";"Gammahf=";G
 7330 FRIAT USING "14A, DDDD.DDDD"; "Gammap=";Gammap
9350 PRIAT USING "14A, DDDD.DDDD"; "Gammap=";Gammap
9370 PRIAT USING "14A, DDDD.DDDD, SX,14A, DDDD, DDDD, SX,14A, DDDD.DDDD"; "Rhf=";Rhf,"
9370 PRINT USING "14A,DDDD.DDDD,5X,14A,DDDD.DDDD,5X,14A,DDDD.DDDD"; "Rhf=";Rhf," Rif=";Rif, "Rp=";Rp 9380 PRINT USING "14A,DDDD.DDDD,5X,14A,DDDD.DDDD,5X,14A,DDDD.DDDD"; "Kmhf=";Kmhf "Kmif=";Kmif, "Kmp=";Kmp 14A,DDDD.DDDD,5X,14A,DDDD.DDDD"; "Kmho=";Kmho, "Kmair=";Kmair 9390 PRINT USING "14A,DDDD.DDDD,5X,14A,DDDD.DDDD"; "Maird=";Kmair 9400 PRINT USING "14A,DDDD.DDDD,5X,14A,DDDD.DDDD"; "Maird=";Haird, "Tid=";Tid 9410 PRINT USING "14A,DDDD.DDDD,5X,14A,DDDD.DDDD,5X,14A,DDDD.DDDD,2X,14A,DDDD.DDDD,2X,14A,DDDD.DDDD,2X,14A,DDDD.DDDD,2X,14A,DDDD.DDDD,2X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDDD,9X,14A,DDDD.DDD,9X,14A,DDDD.DDD,9X,14A,DDDD.DDD,9X,14A,DDDD.DDD,9X,14A,DDDD.DDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDDD,9X,14A,DDD,9X,14A,DDD,9X,14A,DDD,9X,14A,DDD,9X,14A,DDD,9X,14A,DDD,9X,14A,DDD,9X,14A,DDD,9X,14A,D
  9448
                             PRINT
                                                                                                                                                                           **** DATA EXTRACTED
   9450
                             PRINT **
  9450
                            PRINT "FLOW RATES IN Lbm/sec, PRESSURE IN Psia, TEMPERATURE IN R" PRINT ""
   9478
  9420
                             ! HEADING PRINT
 9490 PRINT USING "9A,1X,6A,3X,6A,4X,6A,4X,6A,4X,6A,4X,6A,5X,6A,4X,6A,4X,1QA' ime(sec)", "Hair", "Hhf", "Hho", "Hif", "Ho", "Ti", "F\Lbf", "Ph",
                        FOR J=1 TO Jmax
  9500
  9510
9520
                        FOR I=1 TO 14
IF I=1 THEN
  9530
                                            Vpc=In(J,I)
  9540
                                           Pc=(Vpc-Vpc0)*Kpc+Pbar
  9550
                                   END IF
  9560
                                  IF I=2 THEN
  9570
                                           Vph=In(J, I)
  9580
                                           Ph=(Voh-Voh0)*Koh+Pbar
  9590
                                  END IF
 9600
                                  IF I=3 THEN
  9618
                                                Vpa=In(J,I)
                                                Pa=(Vpa-Vpa0)*Kpa+Pbar
9520
                                 END IF IF I=4 AND Ht=1. THEN
  9630
9640
9650
                                                Vphf=In(J,I)
9650
9670
                                               Phf=(Vphf-Vphf0)*Kphf+Pbar
                                 END IF
9580
                                 IF I=5 AND Ht=1. THEN
                                                Vpho=In(J,I)
 9690
9700
                                                Pho=(Vaho-UphoO)*Kpho+Pbar
```

```
9710
              END IF
              IF I=6 AND FF=1 THEN UF=In(J, I)
9720
9730
9740
9750
                    F=(Vf-Vf0)*Kf
              END IF
9750
9778
9780
              IF 1=5 AND FF=0 THEN F=0
              END IF
IF I=7 THEN
 9790
                    Vpif=In(J,I)
Pif=(Vpif-Vpif0)*Kpif
IF Pif(=(Ph+20) THEN
Pif=0.
 9300
 9810
 9820
 9830
9840
                                END IF
                END IF
IF 1=8 THEN
 9850
9860
9870
                   Vpp=In(J,I)
Pp=(Vpp-Vpp0)*Kpp+Pbar
IF Pp(=(Ph+20) THEN
 9888
 9890
9988
9910
                              Pp=0
END IF
                END IF I=9 THEN
9928
9930
9948
9950
                    Volts=In(J,I)
GUSUB Tcalc
 9960
                 Ti=T
END IF
                IF I=10 THEN
Valts=In(J,I)
GOSUB Tcalc
 9980
 9990
 10000
 10018
                     Ta=T
                END IF
IF I=11 AND Ht=1, THEN
Volts=In(J,I)
GOSUB Tcalc
 10020
 10038
 10040
 10050
 10050
                     Th f=T
 10070
                 END IF
                 IF I=12 AND Ht=1. THEN Volts=In(J,I)
 10030
 10090
                     GOSUB Tcalc
 10180
 10110
                     The=T
 10120
                 END IF
                  IF (=13 THEN
 10130
 10140
                    Volts=In(J,I)
COSUB Tcalc
 10150
                     Tif=T
  10178
                 END IF
                 IF 1=14 THEN
 10190
  10190
                     Velts=In(J, I)
 10200
                     GOSUB Tralc
 10210
10220
10230
                     Tp=T
               END IF
10298 1=3/2
10250 Mair=Kmair#Cdair*Pa*.7854*(Dairchoke^2)/(Ta^.5)
10260 Mhf=Kmhf*Cdhf*Phf*.7854*(Dhfchoke^2)/(Thf^.5)
10270 Mho=Kmho*Cdho*Pho*.7854*(Dhochoke^2)/(Tho^.5)
18280 Mif=Kmif*Cdif*Pif*.7854*(Difchoke^2)/(Tif^.5)
10290 Mo=Kmp*Cdr*Pp*.7854*(Dgchoke^2)/(Tp^.5)
10300 PRINT USING "2X.DD.DD,3X,DD.DDD,4(3X,D.DDDDD),5(3X,DDDD.DD)";T,Mair,Mnf.Ho.dif,Mp,Ti,F,Pc,Ph,Ta
18310 NEXT 3
               PRINTER IS 1
PRINT USING "@"
INPUT "DO YOU WANT TO MAKE POST-RUN AIR CALCULATION? (Y/N)", Yys
IF Y/s="Y" THEN Ko=1
IF Yys="N" THEN COTO Finish
GOTO Paset ! TO CALCULATE THE EFFECTIVE THROAT DIAMETER
  18320
  10330
  10340
  10360
```

```
10380 Finish: !
10390 PRINT "DATA OUTPUT IS COMPLETE"
18400 DISP "SECURE TEST CELL !!!"
10410 LOCAL 709 ! RETURN LOCAL MODE
10420 END
```

LIST OF REFERENCES

- 1. Grant Allan Begley, Jr., An Experimental Investigation of The Combustion Behavior Of Solid Fuel Ramjets, M.S Thesis, Naval Postgraduate School, Monterey California, December 1982.
- 2. Winston Elliot Scott, An Investigation Of The Reacting And Non-reacting Flow Characteristics Of Solid Fuel Ramjets, M.S Thesis, Naval Postgraduate School, Monterey, California, September 1980

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California, 93943		2
3.	Department Chairman, Code 67 Department Of Aeronautics Naval Postgraduate School, Monterey, California 93943		2
4.	Professor D. W. Netzer, Code 67Nt Department Of Aeronautics Naval Postgraduate School, Monterey, California 93943		2
5.	Korea Army H.Q G-3 P.O Box 4 Yong San Ku Yong San Dong, Seoul, KOREA 140		2
6.	Ko, Bog Nam 315 Su-san-ry Okueub Okukun Chun-Buk, KOREA 511-10		2
7.	Kang, Chang Koo Choong-Nam Cheon-An City Won-seong-dong 556-21 Republic of Korea 360		1
8.	Library Korea Military Academy Gong-reung-dong Do-bong-ku Seoul Korea 130-09		1
9.	Central Library 134 Yon-hee-dong Seo-dai-moon-ku Yon Sei University Seoul Korea 121		1
10.	Kim, Young Joo SMC 2364 NPGS Monterey California 93943		1
11.	A. Kertadijaya SMC 2848 NPGS		1

12.	Lee, Cheong Koo 434 Kuan-jeo-dong, Choong-Gu Tea-jeon, Republic of Korea	1
13.	Lee, Jang Hun SMC 1366 NPS Monterey, CA 93943	1
14.	Yim, Chang Ho SMC 2425 NPS Monterey, CA 93943	1
15.	Joo, Kyung Ro SMC 2707 NPS Monterey, CA 93943	1

END

FILMED

7-85

DTIC